Margination of white blood cells - a computational approach by a hydrodynamic phase field model

نویسندگان

  • Wieland Marth
  • Axel Voigt
چکیده

We numerically investigate margination of white blood cells and demonstrate the dependency on a number of conditions including hematocrit, the deformability of the cells and the Reynolds number. A detailed mesoscopic hydrodynamic Helfrich-type model is derived, validated and used for the simulations to provides a quantitative description of the margination of white blood cells. Previous simulation results, obtained with less detailed models, could be confirmed, e.g. the largest probability of margination of white blood cells at an intermediate range of hematocrit values and a decreasing tendency with increasing deformability. The consideration of inertia effects, which become of relevance in small vessels, also shows a dependency and leads to less pronounced margination of white blood cells with increasing Reynolds number.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Margination of white blood cells in microcapillary flow.

Margination of white blood cells (WBCs) towards vessel walls is an essential precondition for their efficient adhesion to the vascular endothelium. We perform numerical simulations with a two-dimensional blood flow model to investigate the dependence of WBC margination on hydrodynamic interactions of blood cells with the vessel walls, as well as on their collective behavior and deformability. W...

متن کامل

White blood cell margination in microcirculation.

Proper functioning of white blood cells is not possible without their ability to adhere to vascular endothelium, which may occur only if they are close enough to vessel walls. To facilitate the adhesion, white blood cells migrate toward the vessel walls in blood flow through a process called margination. The margination of white cells depends on a number of conditions including local hematocrit...

متن کامل

Hydrodynamic investigation of multiple rising bubbles using lattice Boltzmann method

Hydrodynamics of multiple rising bubbles as a fundamental two-phase phenomenon is studied numerically by lattice Boltzmann method and using Lee two-phase model. Lee model based on Cahn-Hilliard diffuse interface approach uses potential form of intermolecular forces and isotropic finite difference discretization. This approach is able to avoid parasitic currents and leads to a stable procedure t...

متن کامل

Margination of Fluorescent Polylactic Acid-Polyaspartamide based Nanoparticles in Microcapillaries In Vitro: the Effect of Hematocrit and Pressure.

The last decade has seen the emergence of vascular-targeted drug delivery systems as a promising approach for the treatment of many diseases, such as cardiovascular diseases and cancer. In this field, one of the major challenges is carrier margination propensity (i.e., particle migration from blood flow to vessel walls); indeed, binding of these particles to targeted cells and tissues is only p...

متن کامل

Mechanism of margination in confined flows of blood and other multicomponent suspensions.

Flowing blood displays a phenomenon called margination, in which leukocytes and platelets are preferentially found near blood vessel walls, while erythrocytes are depleted from these regions. Here margination is investigated using direct hydrodynamic simulations of a binary suspension of stiff (s) and floppy (f) capsules, as well as a stochastic model that incorporates the key particle transpor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015